Sparse cliques trump scale-free networks in coordination and competition

نویسندگان

  • David A. Gianetto
  • Babak Heydari
چکیده

Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner's Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner's Dilemma game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number of cliques in random scale-free network ensembles

In this paper we calculate the average number of cliques in random scale-free networks. We consider first the hidden variable ensemble and subsequently the Molloy Reed ensemble. In both cases we find that cliques, i.e. fully connected subgraphs, appear also when the average degree is finite. This is in contrast to what happens in Erdös and Renyi graphs in which diverging average degree is requi...

متن کامل

Evolving networks consist of cliques

Many real networks have cliques as their constitutional units. Here we present a family of scale-free network model consist of cliques, which is established by a simple recursive algorithm. We investigate the networks both analytically and numerically. The obtained analytical solution shows that the networks follow a powerlaw degree distribution, with degree exponent continuously tuned between ...

متن کامل

Parameterized Clique on Scale-Free Networks

Finding cliques in graphs is a classical problem which is in general NP-hard and parameterized intractable. However, in typical applications like social networks or protein-protein interaction networks, the considered graphs are scale-free, i.e., their degree sequence follows a power law. Their specific structure can be algorithmically exploited and makes it possible to solve clique much more e...

متن کامل

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques

Scale-free networks are usually defined as the ones that have powerlaw degree distributions. Since many of real world networks such as the World Wide Web, the Internet, citation networks, biological networks, and so on, have this property in common, scale-free networks have attracted interests of researchers so far. They also revealed that such networks have some typical properties such as high...

متن کامل

Large Maximal Cliques Enumeration in Large Sparse Graphs

Identifying communities in social networks is a problem of great interest. One popular type of community is where every member of the community knows all others, which can be viewed as a clique in the graph representing the social network. In several real life situations, finding small cliques may not be interesting as they are large in number and low in information content. Hence, in this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016